Acta Crystallographica Section C
Crystal Structure

Communications

ISSN 0108-2701

3 β-Acetoxy- $5 \alpha, 6 \beta$-dihydroxybisnorcholanic acid $22 \rightarrow 16$ lactone

Héctor Novoa de Armas, ${ }^{\text {a }} \boldsymbol{+}$ Oswald M. Peeters, ${ }^{\text {a }}$ Norbert M. Blaton, ${ }^{\text {a }}$ Camiel J. De Ranter, ${ }^{\text {a }}$ Ramón Pomés Hernández, ${ }^{\text {b }}$ José L. Mola, ${ }^{\text {c }}$ Carlos Serafín Pérez, ${ }^{\text {c }}$ Leticia Suárez García, ${ }^{\text {c }}$ Martín A. Iglesias ${ }^{\text {c }}$ and Francisco Coll Manchado ${ }^{\text {c }}$

[^0]Received 6 July 1999
Accepted 1 September 1999
In the title compound, $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{O}_{6}$, the ester linkage in ring A is equatorial. The six-membered rings A, B and C have chair conformations. The five-membered ring D adopts a $13 \beta, 14 \alpha-$ half-chair conformation and the E ring adopts an envelope conformation. The $A / B, B / C$ and C / D ring junctions are trans, whereas the D / E junction is $c i s$.

Comment

In connection with our studies on the synthesis and characterization of bioactive steroids, we determined the molecular structure of 3β-acetoxy- $5 \alpha, 6 \beta$-dihydroxybisnorcholanic acid $22 \rightarrow 16$ lactone, (I), an intermediate compound in the synthesis of the $3 \beta, 5 \alpha, 6 \beta$-triol and $3 \beta, 5 \alpha$-diol-6-keto compounds. The starting material was the steroidal alkaloid solasodine, isolated from Solanum globiferum Dunae, a plant that grows in the fields of Cuba. These products will be tested as plant growth promoters. The absolute configuration was assumed to be the same as that of previous related structures (Novoa de Armas et al., 1999), and confirmed the one predicted beforehand from the synthetic route.

Fig. 1 shows the molecular structure of the title compound, (I), with the corresponding numbering scheme. The C3-O31 bond of the acetoxy group is equatorially oriented and (-)antiperiplanar to the $\mathrm{C} 3-\mathrm{C} 4$ bond. The presence of the acetoxy group bonded to C3 does not disturb the chair conformation of the ring A of the steroidal nucleus. Ring A has a highly symmetrical chair conformation with all asymmetry parameters below 6.4 (3) ${ }^{\circ}$ (Duax et al., 1976). Rota-

[^1]tional symmetry is dominant, a pseudo- C_{2} axis intercepts the $\mathrm{C} 3-\mathrm{C} 4$ bond with asymmetry parameters $\Delta C_{2}(\mathrm{C} 3-\mathrm{C} 4)=$ $3.2(3), \Delta C_{S}(\mathrm{C} 1)=4.4(2)$ and $\Delta C_{S}(\mathrm{C} 3)=0.7(2)^{\circ}$. The average magnitude of the torsion angles is $55.37(12)^{\circ}$. Rings B

(I)
and C have chair conformations, as expected (Pfeiffer et al., 1985). The five-membered ring D adopts a $13 \beta, 14 \alpha$-half-chair conformation (Altona et al., 1968) and the E ring, which has a carbonyl group instead of an additional spiro ring, adopts an envelope conformation with the flap at C17 on the opposite side of the mean plane of ring E to the methyl substituent C21. In related steroids reported in the Cambridge Structural Database (Allen \& Kennard, 1993) that have a spirostan F ring (Novoa de Armas et al., 1999), the E ring has a half-chair conformation. The $A / B, B / C$ and C / D ring junctions are trans, whereas the D / E junction is cis. The bond distances and valence angles are close to the expected values (Honda et al., 1996). The packing of the molecules is assumed to be dictated mainly by intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, and by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (Taylor \& Kennard,

Figure 1
Plot showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level for non-H atoms; H atoms have been omitted for clarity.
1982). The molecules are linked into an infinite two-dimensional network, with base vectors [100] and [010], by means of the $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2).

Experimental

The starting material was the steroidal alkaloid solasodine. The alkaloid was transformed to $3 \beta, 16 \beta$-dihydroxy-5-bisnorcholenic acid $22 \rightarrow 16$ lactone, dissolved in dry pyridine with $\mathrm{Ac}_{2} \mathrm{O}$, and converted to the 3β-acetate. The acetate was treated with m-chloroperoxybenzoic acid in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give a mixture of the α and β epoxides, with about 30% of the β component. Upon treatment with $60 \% \mathrm{HClO}_{4}$ in aqueous acetone, the mixture yielded (I) with a melting point of 536538 K. Crystals were grown by slow evaporation from ethanol.

Crystal data

$\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{O}_{6}$
$M_{r}=420.53$
Orthorhombic, ${ }_{2} P 2_{1} 2_{1} 2_{1}$
$a=6.3980(4) \AA$
$b=9.7142(5) \AA$
$c=35.119(4) \AA$
$V=2182.7(3) \AA^{3}$
$Z=4$
$D_{x}=1.280 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation
$\lambda=1.54184 \AA$
Cell parameters from 42 reflections
$\theta=5.03-28.80^{\circ}$
$\mu=0.730 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Prism, colourless
$0.38 \times 0.22 \times 0.18 \mathrm{~mm}$
$\mathrm{Cu} K \alpha$ radiation

Data collection

Siemens $P 4$ four-circle diffract-	$R_{\text {int }}=0.0243$
\quad ometer	$\theta_{\max }=69.13^{\circ}$
$\omega / 2 \theta$ scans	$h=-1 \rightarrow 6$
Absorption correction: ψ scan	$k=-1 \rightarrow 11$
\quad (North et al., 1968)	$l=-1 \rightarrow 42$
$T_{\min }=0.679, T_{\max }=0.877$	3 standard reflections
3136 measured reflections	every 100 reflections
2865 independent reflections	intensity decay: 4.0%

2668 reflections with $F^{2}>2 \sigma\left(F^{2}\right)$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0791 P)^{2}\right. \\
& \quad+0.6321 P] \\
& \quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.39 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.24 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: } \text { SHELXL } 97 \\
& \quad \text { (Sheldrick, } \\
& \text { Extinction coefficient: } 0.0037 \text { (5) }
\end{aligned}
$$

Table 2
Hydrogen-bonding geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 5-\mathrm{H} 5 \cdots \mathrm{O} 32^{\mathrm{i}}$	0.82	2.26	3.071 (4)	173
O6-H6 $\cdots{ }^{\text {O }}{ }^{\text {ii }}$	0.82	2.25	2.986 (3)	150
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O} 6^{\text {iii }}$	0.98	2.44	3.352 (4)	155
C16-H16 \cdots O23 ${ }^{\text {iv }}$	0.98	2.42	3.146 (3)	131
Symmetry codes: $\frac{1}{2}+x, \frac{3}{2}-y, 1-z$.	$-x, y$	(ii)	$y, z ; \quad \text { (iii) }$	$x, y, z ;$ (iv)

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Bergerhoff, 1996); software used to prepare material for publication: PLATON (Spek, 1990) and PARST (Nardelli, 1983, 1995).

This work was supported in part by the 'Administration Generale de la Cooperation au Developpement, AGCD' (Matricule: 911264) from the Belgian Government (ABOS-AGCD) and K. U. Leuven.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: LN1086). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. \& Kennard, O. (1993). Chem. Des. Autom. News, 8, 31-37.
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Altona, C., Geise, H. J. \& Romers, C. (1968). Tetrahedron, 24, 13-32.
Bergerhoff, G. (1996). DIAMOND. Gerhard-Domagk-Strasse 1, Bonn, Germany.
Duax, W. L., Weeks, C. M. \& Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Eliel \& N. Allinger, pp. 271-283. New York: John Wiley.
Honda, T., Fujii, I., Hirayama, N., Ishikawa, D., Kawagishi, H., Song, K.-S. \& Yoo, I.-D. (1996). Acta Cryst. C52, 1550-1552.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Novoa de Armas, H., Blaton, N. M., Peeters, O. M., De Ranter, C. J., Pomés Hernández, R., Iglesias Arteagas, M., Pérez Gil, R. \& Coll Manchado, F. (1999). Acta Cryst. C55, 601-603.

Pfeiffer, D., Kutschabsky, L., Kretschmer, R. G., Collect, F. \& Adam, G. (1985). Z. Chem. 25, 183-184.

Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Siemens (1996). XSCANS. X-ray Single Crystal Analysis System. Version 2.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Taylor, R. \& Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063-5070.

[^0]: ${ }^{\text {a }}$ Laboratorium voor Analytische Chemie en Medicinale Fysicochemie, Faculteit Farmaceutische Wetenschappen, Katholieke Universiteit Leuven, Van Evenstraat 4, B-3000 Leuven, Belgium, ${ }^{\text {b }}$ Centro Nacional de Investigaciones Científicas, División de Química, Apartado 6990, La Habana, Cuba, and ${ }^{\text {C}}$ Laboratorio de Productos Naturales, Facultad de Química, Universidad de La Habana, Apartado 10400, La Habana, Cuba
 Correspondence e-mail: hector.novoa@farm.kuleuven.ac.be

[^1]: \dagger On leave from: Centro de Química Farmacéutica, Departamento de Análisis, Apartado 16042, La Habana, Cuba.

