organic compounds

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

3β -Acetoxy- 5α , 6β -dihydroxybisnorcholanic acid $22 \rightarrow 16$ lactone

Héctor Novoa de Armas,^a*† Oswald M. Peeters,^a Norbert M. Blaton,^a Camiel J. De Ranter,^a Ramón Pomés Hernández,^b José L. Mola,^c Carlos Serafín Pérez,^c Leticia Suárez García,^c Martín A. Iglesias^c and Francisco Coll Manchado^c

^aLaboratorium voor Analytische Chemie en Medicinale Fysicochemie, Faculteit Farmaceutische Wetenschappen, Katholieke Universiteit Leuven, Van Evenstraat 4, B-3000 Leuven, Belgium, ^bCentro Nacional de Investigaciones Científicas, División de Química, Apartado 6990, La Habana, Cuba, and ^cLaboratorio de Productos Naturales, Facultad de Química, Universidad de La Habana, Apartado 10400, La Habana, Cuba

Correspondence e-mail: hector.novoa@farm.kuleuven.ac.be

Received 6 July 1999 Accepted 1 September 1999

In the title compound, $C_{24}H_{36}O_6$, the ester linkage in ring A is equatorial. The six-membered rings A, B and C have chair conformations. The five-membered ring D adopts a 13β , 14α -half-chair conformation and the E ring adopts an envelope conformation. The A/B, B/C and C/D ring junctions are *trans*, whereas the D/E junction is *cis*.

Comment

In connection with our studies on the synthesis and characterization of bioactive steroids, we determined the molecular structure of 3β -acetoxy- 5α , 6β -dihydroxybisnorcholanic acid $22 \rightarrow 16$ lactone, (I), an intermediate compound in the synthesis of the 3β , 5α , 6β -triol and 3β , 5α -diol-6-keto compounds. The starting material was the steroidal alkaloid solasodine, isolated from *Solanum globiferum* Dunae, a plant that grows in the fields of Cuba. These products will be tested as plant growth promoters. The absolute configuration was assumed to be the same as that of previous related structures (Novoa de Armas *et al.*, 1999), and confirmed the one predicted beforehand from the synthetic route.

Fig. 1 shows the molecular structure of the title compound, (I), with the corresponding numbering scheme. The C3–O31 bond of the acetoxy group is equatorially oriented and (–)-antiperiplanar to the C3–C4 bond. The presence of the acetoxy group bonded to C3 does not disturb the chair conformation of the ring A of the steroidal nucleus. Ring A has a highly symmetrical chair conformation with all asymmetry parameters below 6.4 (3)° (Duax *et al.*, 1976). Rota-

tional symmetry is dominant, a pseudo- C_2 axis intercepts the C3-C4 bond with asymmetry parameters $\Delta C_2(C3-C4) = 3.2$ (3), $\Delta C_S(C1) = 4.4$ (2) and $\Delta C_S(C3) = 0.7$ (2)°. The average magnitude of the torsion angles is 55.37 (12)°. Rings *B*

and *C* have chair conformations, as expected (Pfeiffer *et al.*, 1985). The five-membered ring *D* adopts a 13β , 14α -half-chair conformation (Altona *et al.*, 1968) and the *E* ring, which has a carbonyl group instead of an additional spiro ring, adopts an envelope conformation with the flap at C17 on the opposite side of the mean plane of ring *E* to the methyl substituent C21. In related steroids reported in the Cambridge Structural Database (Allen & Kennard, 1993) that have a spirostan *F* ring (Novoa de Armas *et al.*, 1999), the *E* ring has a half-chair conformation. The *A/B*, *B/C* and *C/D* ring junctions are *trans*, whereas the *D/E* junction is *cis*. The bond distances and valence angles are close to the expected values (Honda *et al.*, 1996). The packing of the molecules is assumed to be dictated mainly by intermolecular $O-H\cdots O$ hydrogen bonds, and by intermolecular $C-H\cdots O$ interactions (Taylor & Kennard,

Plot showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level for non-H atoms; H atoms have been omitted for clarity.

1982). The molecules are linked into an infinite two-dimensional network, with base vectors [100] and [010], by means of the $O-H\cdots O$ hydrogen bonds (Table 2).

Experimental

The starting material was the steroidal alkaloid solasodine. The alkaloid was transformed to 3β , 16β -dihydroxy-5-bisnorcholenic acid $22\rightarrow 16$ lactone, dissolved in dry pyridine with Ac₂O, and converted to the 3β -acetate. The acetate was treated with *m*-chloroperoxy-benzoic acid in CH₂Cl₂ to give a mixture of the α and β epoxides, with about 30% of the β component. Upon treatment with 60% HClO₄ in aqueous acetone, the mixture yielded (I) with a melting point of 536–538 K. Crystals were grown by slow evaporation from ethanol.

[†] On leave from: Centro de Química Farmacéutica, Departamento de Análisis, Apartado 16042, La Habana, Cuba.

Crystal data

C24H36O6
$M_r = 420.53$
Orthorhombic, $P2_12_12_1$
a = 6.3980 (4) Å
b = 9.7142(5) Å
c = 35.119 (4) Å
$V = 2182.7 (3) \text{ Å}^3$
Z = 4
$D_x = 1.280 \text{ Mg m}^{-3}$
Cu $K\alpha$ radiation

Data collection

Siemens P4 four-circle diffract-
ometer
$\omega/2\theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\min} = 0.679, T_{\max} = 0.877$
3136 measured reflections
2865 independent reflections
2668 reflections with $F^2 > 2\sigma(F^2)$

Refinement

Refinement on F^2 $R[F^2>2\sigma(F^2)] = 0.0457$ $wR(F^2) = 0.1329$ S = 1.0512865 reflections 278 parameters H-atom parameters constrained
$$\begin{split} \lambda &= 1.54184 \text{ \AA} \\ \text{Cell parameters from 42} \\ \text{reflections} \\ \theta &= 5.03-28.80^{\circ} \\ \mu &= 0.730 \text{ mm}^{-1} \\ T &= 293 \text{ K} \\ \text{Prism, colourless} \\ 0.38 \times 0.22 \times 0.18 \text{ mm} \end{split}$$

 $\begin{aligned} R_{\rm int} &= 0.0243\\ \theta_{\rm max} &= 69.13^\circ\\ h &= -1 \rightarrow 6\\ k &= -1 \rightarrow 11\\ l &= -1 \rightarrow 42\\ 3 \mbox{ standard reflections}\\ every 100\mbox{ reflections}\\ intensity \mbox{ decay: } 4.0\% \end{aligned}$

$$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.0791P)^2 \\ &+ 0.6321P] \\ &where \ P = (F_o^2 + 2F_c^2)/3 \\ &(\Delta/\sigma)_{\rm max} = 0.001 \\ &\Delta\rho_{\rm max} = 0.39 \ {\rm e}\ {\rm \AA}^{-3} \\ &\Delta\rho_{\rm min} = -0.24 \ {\rm e}\ {\rm \AA}^{-3} \\ &{\rm Extinction \ correction: \ SHELXL97} \\ &({\rm Sheldrick, \ 1997}) \\ &{\rm Extinction \ coefficient: \ 0.0037 \ (5)} \end{split}$$

H atoms were calculated geometrically and included in the refinement, but were constrained to ride on their parent atoms. The isotropic displacement parameters of the H atoms were fixed to 1.3 times U_{eq} of their parent atoms. The number of unique reflections is 2291. The number of Friedel related pairs is 574.

Table 1

Selected	geometric	parameters	(Å,	°)	
----------	-----------	------------	-----	----	--

O5-C5	1.456 (3)	O23-C22	1.348 (3)
O6-C6	1.431 (4)	O31-C3	1.470 (3)
O22-C22	1.204 (4)	O31-C32	1.328 (5)
O23-C16	1.463 (3)	O32-C32	1.191 (5)
C16-O23-C22	110.9 (2)	O23-C16-C17	105.39 (16)
C3-O31-C32	119.6 (3)	O23-C16-C15	111.7 (2)
O31-C3-C2	111.4 (2)	O22-C22-C20	128.6 (3)
O31-C3-C4	103.4 (2)	O23-C22-C20	110.8 (2)
O5-C5-C10	107.14 (19)	O22-C22-O23	120.6 (3)
O5-C5-C4	107.7 (2)	O32-C32-C33	123.0 (4)
O5-C5-C6	104.4 (2)	O31-C32-O32	124.6 (3)
O6-C6-C7	111.9 (2)	O31-C32-C33	112.4 (4)
O6-C6-C5	109.4 (2)		

Table 2Hydrogen-bonding geometry (Å, $^{\circ}$).

$D-\mathrm{H}\cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$O5-H5\cdots O32^{n}$	0.82	2.26	3.071 (4)	173
$O6-H6\cdots O5^{n}$	0.82	2.25	2.986 (3)	150
$C3-H3\cdots O6^{m}$	0.98	2.44	3.352 (4)	155
$C16-H16\cdots O23^{iv}$	0.98	2.42	3.146 (3)	131

Symmetry codes: (i) $1 - x, y - \frac{1}{2}, \frac{1}{2} - z$; (ii) x - 1, y, z; (iii) 1 + x, y, z; (iv) $\frac{1}{2} + x, \frac{3}{2} - y, 1 - z$.

Data collection: *XSCANS* (Siemens, 1996); cell refinement: *XSCANS*; data reduction: *XSCANS*; program(s) used to solve structure: *SIR*92 (Altomare *et al.*, 1994); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *DIAMOND* (Bergerhoff, 1996); software used to prepare material for publication: *PLATON* (Spek, 1990) and *PARST* (Nardelli, 1983, 1995).

This work was supported in part by the 'Administration Generale de la Cooperation au Developpement, AGCD' (Matricule: 911264) from the Belgian Government (ABOS-AGCD) and K. U. Leuven.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: LN1086). Services for accessing these data are described at the back of the journal.

References

- Allen, F. H. & Kennard, O. (1993). Chem. Des. Autom. News, 8, 31-37.
- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Altona, C., Geise, H. J. & Romers, C. (1968). Tetrahedron, 24, 13–32.
- Bergerhoff, G. (1996). *DIAMOND*. Gerhard-Domagk-Strasse 1, Bonn, Germany.
- Duax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). *Topics in Stereochemistry*, Vol. 9, edited by E. L. Eliel & N. Allinger, pp. 271–283. New York: John Wiley.
- Honda, T., Fujii, I., Hirayama, N., Ishikawa, D., Kawagishi, H., Song, K.-S. & Yoo, I.-D. (1996). Acta Cryst. C52, 1550–1552.
- Nardelli, M. (1983). Comput. Chem. 7, 95-98.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Novoa de Armas, H., Blaton, N. M., Peeters, O. M., De Ranter, C. J., Pomés Hernández, R., Iglesias Arteagas, M., Pérez Gil, R. & Coll Manchado, F. (1999). Acta Cryst. C55, 601–603.
- Pfeiffer, D., Kutschabsky, L., Kretschmer, R. G., Collect, F. & Adam, G. (1985). Z. Chem. 25, 183–184.
- Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Siemens (1996). XSCANS. X-ray Single Crystal Analysis System. Version 2.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Spek, A. L. (1990). Acta Cryst. A46, C-34.

Taylor, R. & Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063-5070.